Joining forces to promote the service-oriented architecture PLC (SOA-PLC) - an Internet of Things enabler!

Stefan Hoppe
BECKHOFF Automation
s.hoppe@beckhoff.com

- Chairman PLCopen & OPCF working group
President OPC-Europe
Agenda

1. About Beckhoff

2. IoT vs Industry 4.0: What is different – what is similar?

3. OPC-Unified Architecture: Basics and Modeling
 Collaboration PLCopen and OPCF

4. Success Stories

5. Service Oriented Architecture: SOA-PLC

6. More Information
Beckhoff: About us

- HQ located in Verl, Germany www.beckhoff.com
 HQ US located in Minneapolis area (Savage, MN)

- Solutions for Industrial Automation:
 - IPC, Motherboards, Display Panels, I/O
 - Various fieldbus solutions
 EtherCAT Technology www.ethercat.org
 - Scalable real-time extension for Windows
 DOS / NT / Win2K / XP / Win7 / Win8 / Windows Embedded
 IEC 61131-3 PLC / Motion Control / HMI

- High level of expertise in Embedded Automation

- BECKHOFF Pack Expo booth:
 North Hall, Booth 4740
Member
- 1998 May: Beckhoff becomes a Corporate Member of OPC Foundation

Products: Early adopter of technologies
- 1999 OPC-DA Server for IEC 61131-3-PLC
- 2006 OPC-DevCon: First OPC-UA Server embedded into PLC
- 2008 Product available: TwinCAT OPC-UA for Data Access
- 2011 Certified OPC-UA Server product
- 2012 First OPC UA Client embedded into PLC

Vision: Actively pushing OPC-UA
- 2008: Chair of working group “PLCopen & OPC-Foundation”
- 2010: President OPC-Europe
1. About Beckhoff

2. IoT vs Industry 4.0: What is different – what is similar?

3. OPC-Unified Architecture: Basics and Modeling
 Collaboration PLCopen and OPCF

4. Success Stories

5. Service Oriented Architecture: SOA-PLC

6. More Information
What is the Internet of Things?

“Connected world solutions combine sensors and technologies to enable objects and infrastructure to interact with monitoring, analytics and control systems over Internet-style networks.”

Source: Forrester
Microsoft delivers on the Internet of Things

Devices and assets
- Connect new and existing devices using open-source agents or gateway technologies

Cloud and infrastructure
- Store machine-generated data with data from other sources in the cloud

Analytics Ready
- View data, administer devices, and configure rules, alerts, and other actions using out-of-box or custom portals

Drive Insights
- Mine insights from your data to find gaps and opportunities to make better decisions and realize new business value
IoT: Simplified message:

- We provide an agent for all platforms
- IoT starts with data in the cloud
- New business with analytics in the cloud

Required:

- (Just) data transport
- Security
Industry 4.0: Simplified message:

- Devices become more intelligent
- Communication “Service to Service”
- Cloud is an option as one service

Requirements are higher

- Horizontal and vertical
- “Ad-hoc” discovery of services
- Modeling: Information Model
- Scalable: From sensor to the cloud
- Operating system and language independent
- Safe: authentication, signing, encryption
- International: IEC Standard
Today: Top down information flow

Direction, “How”:
- Today: Top down information flow:
 - upper level: always initiates communication (as client)
 - lower level: answers (as server)
- Next: OPC-UA client & server integrated into smallest devices
 - Network of intelligent systems

Content, “What”:
- Today: Multiple converters:
 From “electrical signal”
 -> via data -> via functions
 -> to service”
- Next: Service to service
New: OPC-UA integrated into devices allow “From service to service”

Source: Prof. Zühlke, DFKI
Agenda

1. About Beckhoff
2. IoT vs Industry 4.0: What is different – what is similar?
3. OPC-Unified Architecture: Basics and Modeling
 Collaboration PLCopen and OPCF
4. Success Stories
5. Service Oriented Architecture: SOA-PLC
6. More Information
OPC-UA: Basics

- **Communication infrastructure**
 - Secure, interoperable, reliable, performant, scalable
 - Platform-independent (OS, language, vendor)
 - Technology:
 - Service-oriented
 - Provide technology independent from services
 - Small set of easy-to-use services
 - 37 operations
 - “Grown up” in Automation market - (e.g. time stamp, status) but neutral for other vertical markets

- **Information modeling**
 - Rich, object-oriented and extensible typmodel
 - Typmodel in address space
 - Full mashed network
 - Scalable:
 - Supports simple and complex models
 - Standardized information models based on OPC-UA
 - PLCopen, BACnet, MTConnect…
OPC-UA: Basics

Summary: OPC Unified Architecture stands for...

Data Modeling
- Generic object-oriented modeling
- Objects with variables, methods and events
- Extensible type system
- History for data and events
- State machines, programs, alarms & condition
- Complex data

Communication
- Integrated security mechanisms
- High speed UA TCP protocol
- Web services for Internet
- Platform independent
- Built-in robustness and fault tolerance
- Redundancy

Collaboration
- UA is IEC standard 62541
- UA is base for other information models
- EDDL and FDT
- PLCopen, BACnet, MES, MDIS, ISA95

New Applications and Use Cases
- Profiles for different use cases
- Scalability
- Integration into embedded systems
- MES and ERP systems
- Specialized versions for different industries
UA on a PLC - Experience

- System configuration
 - UA Server directly on PLC
 - No configuration necessary
 - Address space is always consistent with PLC program
 - Server: C++ UA code
 - Easy to compile (VS2005)
 - C++ to support various platforms X86/ARM
 - C++ to support various OS: small CE-based PLC or highend multi-media XPE
 - It works...

>>> Expectation:
- Option for chaining server if multiple clients access the same device/data
- Massive implementations on PLCs
- End customers saving money for extra "OPC"-PC
- PLCopen:
 - History: Defined Funktionsblocks for e.g. Motion Control
 - Future: Define "PLCopen UA" FBs for communication!
#1: OPC-UA model for IEC 61131-3: How?

![Diagram showing the process of OPC-UA model development for IEC 61131-3](image-url)
Entry points into Address Space

Object types based on Function Blocks

Full object hierarchy below DeviceSet

Entry point for DA Clients like HMI
Beckhoff

“PLC1”

Bosch-Rexroth

“Logic”

Different entry point

All information about IEC61131-3 project:
- FBs
- POUUs
- Structures
- Tasks / Resources..

... but semantically identical objects!
PLCopen: Content “WHAT”

OPC-UA-Server: Communication “HOW”

UA-Clients: SCADA/MES/ERP Presentation

#1: OPC-UA model for IEC 61131-3: Results

All information about IEC 61131-3 project:
- FBs
- POUs
- Structures
- Tasks / Resources..

FUNCTION_BLOCK FB_InputParameter
VAR_OUTPUT
 rFillLevel : REAL;
 rSteamDemand : REAL;
END_VAR

Advantages:
- Standardized UA access
- Identical namespace
- Complete information model

Advantages:
- Reuseable HMI Faceplates
- Rapid engineering
- Transparent PLC controller
#1: OPC-UA model for IEC 61131-3: Results

- Connection **to the controller**
- Integrated: PLC and OPC-UA in embedded device
- Mapping: Support official mapping of IEC 61131-3 to OPC-UA
- Benefit: Secured, semantic interoperability
#2: OPC-UA Client FBs for IEC 61131-3: Vision

Connection >from the controller < Controller initiating communication

- Vertical & Horizontal
- Fieldbus independent
- It’s fast – but not a fieldbus
22 FBs for data communication and to invoke method

- UA_Connect/Disconnect
- UA_NamespaceGetIndex
- UA_TranslatePath
- UA_NodeGetHandle/GetHandleList
- UA_NodeReleaseHandle/ReleaseHandleList
- UA_NodeGetInfo
- UA_SubscriptionCreate/Delete/Operate
- UA_MonitoredItemAdd/Remove/Operate
- UA_Read/ReadList
- UA_Write/WriteList
- UA_MethodGetHandle/ReleaseHandle
- UA_MethodCall

1 FB for Diagnosis
- UA_ConnectionGetStatus

Released April 3rd 2014
Agenda

1. About Beckhoff
2. IoT vs Industry 4.0: What is different – what is similar?
3. OPC-Unified Architecture: Basics and Modeling
 Collaboration PLCopen and OPCF
4. Success Stories
 - M2M & IoT in decentral water treatment
 - Smart metering: From sensor to cloud
 - From shop floor to SAP top floor
5. Service Oriented Architecture: SOA-PLC
6. More Information
Who?
Joint Water and Wastewater Authority
Vogtland, Germany
Silvio Merz, Divisional Manager, s.merz@zwav.de

What?
• Supply water to about 240,000 people and treating their wastewater as well
• Operate almost 600 Water and Wastewater treatment plants
 • Waterworks
 • Water pumps
 • Water reservoirs
• Distributed over about 1400 Km²
M2M & IoT in decentralized, intelligent equipment

Closed User Group

Requests for process values and state changes

Due to problems at group 1 supplier of freshwater has changed to group 2

Waterworks 1

Pumping Plant 1

Please take over filling of elevated reservoir

Quality problems in freshwater!

Requests for process values and state changes

Elevated Reservoir

Level reached!

Stopped pumping

Waterworks 2

Pumping Plant 2
TwinCAT OPC-UA Client (PLCopen-based) and TwinCAT OPC-UA Server are integrated into one of the smallest Beckhoff controllers, a CX9020 Embedded PC.
Cost saving effects

- Transmission of complex data structures -> there’s no configuration of every single datapoint required
- Replacement of a proprietary solution with a combined OPC-UA client/server. Standardization of data communication reduces interfaces, just the OPC-UA client and server.
- A physical interruption of the connection does not lead to a loss of information -> automatically buffered in the OPC-UA server for a time and can be retrieved as soon as the connection has been restored
- Using security mechanisms like authentication, signing and encryption integrated in OPC-UA in addition to a closed mobile radio group to ensure the integrity of the confidential data
- “The solution provided us with a saving on the initial licensing costs of more than 90 % per device.”
Who:
- Regio IT, Germany

What:
- Smart metering project in Germany
- Decentral measurement (optional local buffering of data), pushing into central databases for analytics and deploying results
From shop floor to SAP top floor

Who: Company Elster
- 7,000 employees, 38 major locations
- 200 million installations in the last 10 years

What
- From shop floor (Beckhoff) controller to top floor (SAP)
- OPC-UA: Direct connection from SAP into controller

Benefit
- Quick: Connect machine within 30min
- Easy to use for PLC and MES team
- Standardized interface layer (OPC-UA is IEC 62541)
- Fast connection, include security out of the box
Agenda

1. About Beckhoff
2. IoT vs Industry 4.0: What is different – what is similar?
3. OPC-Unified Architecture: Basics and Modeling
 Collaboration PLCopen and OPCF
4. Success Stories
5. Service Oriented Architecture: SOA-PLC
6. More Information
Service Oriented Architecture (SOA) PLC:

- Controller provides **Services**
 Discovery of Services

- **Standardized** Access Support of
 - Interoperability
 - **Security**: Rolls of access per user
 - **Information-Modeling**
 Type and Data consistency
SOA-PLC: Runtime and Transport

OS
- Microsoft Windows-based

TwinCAT 3
- Scalable devices
- Microsoft Windows-based
- Resource management
- Hard Realtime, scalable down to 50µs
- Visual Studio-based Programming Environment
- Implement modules in IEC 61131-3, C++ and Matlab/Simulink
- Distribute modules to all available CPU cores

Transport
- Service Invocation:
 - Request / Response
 - Publisher / Subscriber
- One-to-One or One-to-Many
- Security (encryption/signing based on X.509), optionally

OPC Unified Architecture (IEC 62541)
SOA-PLC: Services Overview

Data- Services
- Live-View of Variables (Data Access)
- Archiv: Historical Data
- Alarm & Event
- Recipes
- Method / Program / State Machine

Administration
- Deploy binaries
- “Start” : Start execution
- Stop: Stop execution
- Reset

Engineering
- Get TC3 PLC/C++ code from database
- Download source code to TC3 runtime
- Scan hardware I/Os
- Assign TC3 module code to hardware I/Os
- Create, configure and assign Tasks to CPU cores
- Assign TC3 logic modules to Tasks
- Compile code
- Activate

Monitoring
- Device: Hardware Diagnostics
- Customer-defined: Production / OEE

Application-/Domain-specific
Organization-defined services
Customer-defined services
Standardized Models
- PLCopen
- FDI
- MES
- CNC-HMI
- BACnet
- ...

Beckhoff Models
Providing access to information about
- Hardware: CPU temperature, fan status, RAID status
- Software: OS version, available RAM, IP address

Customer Models
- Self-defined models
 How to model? Easy to handle?
SOA-PLC: Customer defined services in IEC 61131-3
OPC-UA provides RPC calls between IT and Automation BECKHOFF

- “SoA PLC”: Service oriented architecture is the key for industrial communication
 - IEC 61131-3: Easy implementation of services
 FUNCTIONBLOCK can be invoked from outside from any OPC-UA client
 - SOA-PLC: Remote-procedure-call (RPC)
 based on international standards: IEC61131-3 + OPC-UA
SOA-PLC: IEC 61131-3 and OPC-UA
Increase efficiency and data consistency

- SOA-controller as enabler for IoT and M2M optimized communication

Service oriented architecture: service calls instead of data (property) exchange

Common practice:
1. MES: “I like to send recipe data”
2. PLC: “OK”
3. MES: “Here are recipe data 1”
 “Here are recipe data 2…”
4. MES: “Finished, please start production”
5. PLC: “OK”

Time consuming handshake mechanism

New: service calls
MES: “Here is new recipe”
PLC: “OK”

ONE data communication to handle:
- secure transport of inputs
- code execution and wait on result
- transport of outputs to caller

Increase efficiency
1. About Beckhoff

2. IoT vs Industry 4.0: What is different – what is similar?

3. OPC-Unified Architecture: Basics and Modeling
 - Collaboration PLCopen and OPCF

4. Success Stories

5. Service Oriented Architecture: SOA-PLC

6. More Information
More Information

- Brochure: “OPC UA – Pioneer of the 4th industrial (r)evolution”
 Available in English and German

- Addresses the IT audience

- Quotes from
 - Academia / Industry / Organizations

- Technology

- Scenarios
 - Scalability: UA in sensor level
 - Identification: UA in RFID
 - Controller: Semantic Interoperability
 - Vertical: From controller to SAP
 - Horizontal: UA as enabler for M2M and IoT
 - User&Machine: UA in browser
More Information

- OPC Foundation www.opcfoundation.org
- PLCopen www.plcopen.org

- BECKHOFF Automation www.beckhoff.com
 - Free downloads of trial versions
 - TwinCAT 3: Automation - integrated into Microsoft Visual Studio
 - BECKHOFF Pack Expo booth: North Hall, Booth 4740